

The Protein Production Facility A Training and Research Center

Dr. Tsafi Danieli

Session 1

Overview of recombinant proteins production

Introduction to heterologous expression in E.coli

Focus on Industry vs. Academia Requirements

Documentation

Standard laboratory practice and documentation in ELNs and SOP logbooks

• Vectors

IP considerations, academic use vs. commercial contracts

• Genes

synthetic vs. natural, fusion tags and proteins (regulations and production considerations)

Cell lines and strains

Verified and documented for cell-based assays, known cell banks and repositories, certified for therapeutic production; or

• Regents

Documented reagents, cell bank, animal-free process

Document and register all procedures and reagents

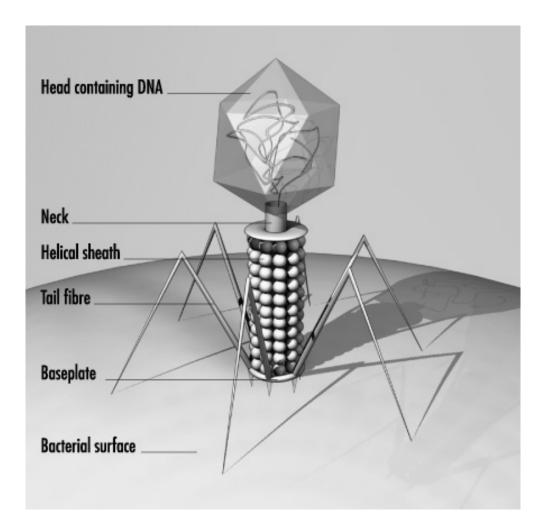
- Academic procedures and practices will not be suitable for production of biologics
- Research in academic laboratory will be sufficient for proof of concept if the documentation was done under SOP conditions
- Easy to translate and commercialize
- Recommended and mandatory practice or basic research, publications and reproducibility

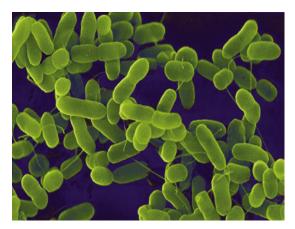
Strategy depends on the required application

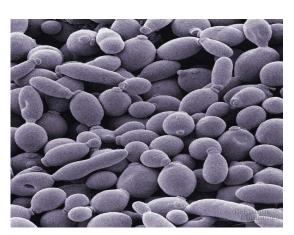
- Activity assays
- Antibodies production
- Protein-protein interaction
- Structure determination
- Therapeutics (Biologics)

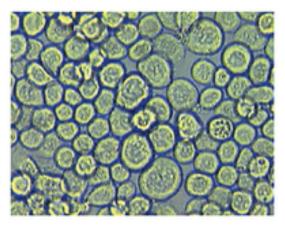
Native proteins are often difficult to study

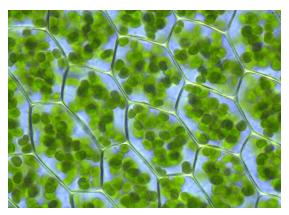
- Limited amounts
- Source unavailable
- Unstable
- Difficult to isolate

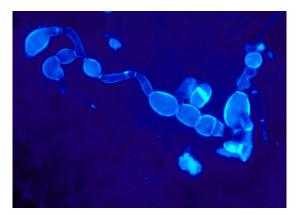

Cell Factories

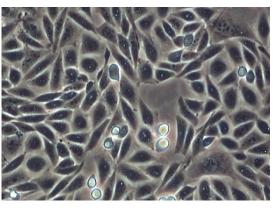


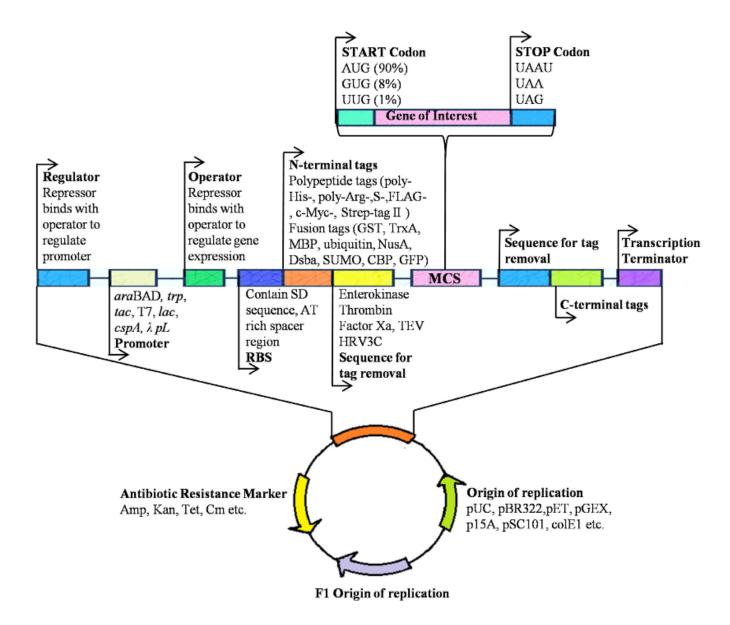

Natural Solutions

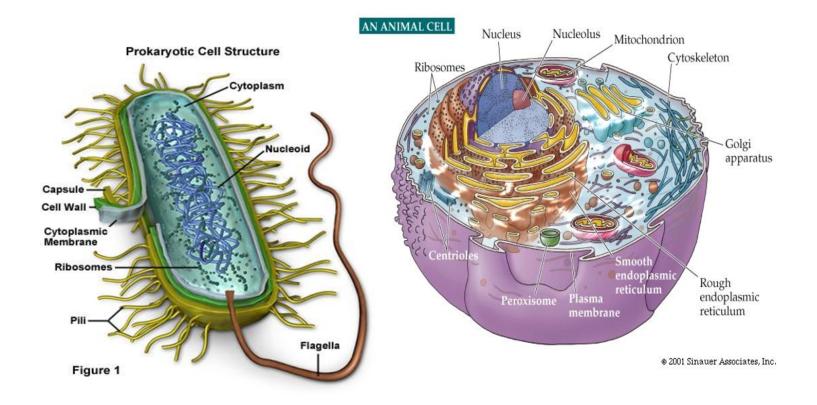

Cell Factories


Bacteria E. coli

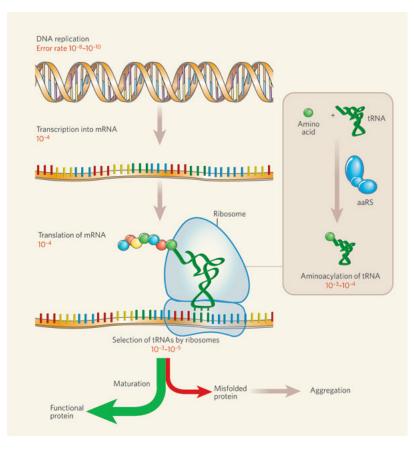

Yeast *s.cerevisiae*


Insect SF9


Plant cells


Bacteria B. subtilis

Mammalian CHO



Prokaryotes vs. Eukaryotes

The Protein Pathway in the Host Cell

- Transcription
- Translation
- Modification
- Folding
- Localization
- Interactions
- Degradation

Learn as much as possible about your protein before starting the project

- Eukaryotic/Prokaryotic?
- Secreted/Cytosolic/membrane?
- Contains rare codons?
- Contains cysteines?
- Might be toxic to the host cell?
- Degradable?
- Requires post-translational modifications for activity?
- Part of a complex?

Productivity comparison

Expression System	Ease of Handling and Scale-Up*	Protein Expression Level	Cytotoxic Mammalian Proteins	Percent Yield (Based on Dry Weight)	PTMst	Applications
Bacterial	* * *	Up to 10–30 g/L	Yes	1–5%	+	Functional assays Structural analysis Antibody generation Protein interactions
Yeast	* **	Up to 30 g/L	Yes	1%	++	Functional assays Structural analysis Antibody generation Protein interactions
Insect	**	Up to 500 mg/L	Yes	30%	+++	Functional assays Structural analysis Antibody generation
Mammalian	*	Under 10 mg/L		<1%	++++	Functional assays Protein interactions Antibody generation
Cell free	*	1–3 mg	Yes	N/A	++	Functional assays Protein interactions

tVery minimal PTM: +; PTM the closest to that in naturally occurred proteins: ++++.

Post Translational Modifications

Post translational modifications							
	<u>E. coli</u>	<u>Yeast</u>	<u>Insect cells</u>	<u>mammalian</u>			
N-Acetylation	Yes	Yes	Yes	Yes			
Amidation	No	Yes	Yes	Yes			
γ–Carboxylation of glutamate	No	No	No	Yes			
N-glycosylation	No	Yes	Yes	Yes			
O-glycosylation	No	Yes	Yes	Yes			
Heterodimer	Yes	Yes	Yes	Yes			
Hydroxylation	No	Yes	Yes	Yes			
Myristoylation	Possible	Yes	Yes	Yes			
Palmitoylation	No	Yes	Yes	Yes			
Phosphorilation	Yes	Yes	Yes	Yes			
Protein proteolytic process	Signal pept.	Yes	Yes	Yes			
Sulfation	No	No	Yes	Yes			
N-term Met removal	Partial	Partial	Yes	Yes			

Common applications:

- Proteins production for raising polyclonal antibodies
- Production of non-glycosylated therapeutic proteins
- Structure determination
- Multiple research applications

Pros:

Highest quantity, low cost Well defined, many vectors and fusion tags

<u>Cons:</u>

Lack of / Different Post translational modifications (PTMs) Best suited for heterologous proteins smaller than 80kDa, Often not suited for membrane and secreted proteins Contains endotoxins

Best candidates for E.coli expression

Best expressed when:

- protein is 80kDa and smaller
- Not part of a complex
- Cytosolic origin (not secreted)
- Known to be soluble
- Single globular domain
- Does not require glycosylations
- If gene if from a different species: check codon bias (order codon optimized gene)

- Expression vectors for E.coli
- Gene of interest elements
- Host strains
- Growth conditions

Four required elements for success

Vector

Gene

Environment

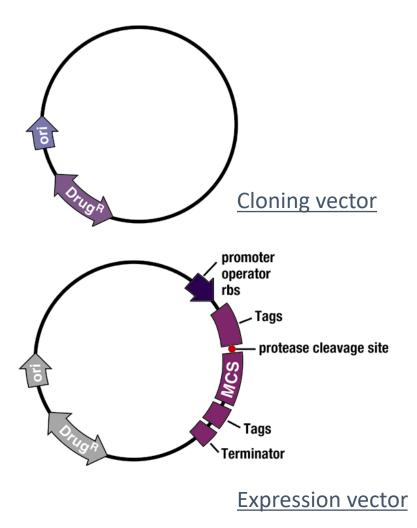
Vector

Vector

Gene

Growth conditions

Host


Plasmid Features

E. coli expression vector contains the following elements:

1. <u>Selectable Marker</u>: to ensure maintenance of the vector in the host cell (bla-ampicilin, cat-chloramphenicol, tet-tetracycline, Kanamycin, zeocin etc.)

 Origin of replication: for independent, extra chromosomal replication .
 ColE1 replicon has 10-200 plasmids per cell

3. <u>Promoter</u>: controllable transcriptional promoter, which can be induced for direct production of large amounts of mRNA of the cloned gene.

Commonly used promoters

Commonly used promoters for the production of recombinant protein along with their properties.

Promoter	Source	Regulation	Induction methods	Limitations
lac	E. coli	lacI, lacIq	IPTG, Thermal	Expression level low and leaky expression; Lactose cannot be used as inducer in presence of glucose.
trp	E. coli	unknown	Trp starvation, IAA	Leaky expression
araBAD	E. coli	araC	L-Arabinose	Low Availability of vectors;
				Catabolic repression by glucose
tac, hybrid	E. coli	laci, laciglacid	IPTG, Thermal	Leaky expression
λpL		1 cIts 857	Thermal	High temperature is required
				for induction
T7-lac operator	T7	Lacl q	IPTG	Leaky expression
phoA	E. coli	phoB, phoR	Phosphate starvation	Media limitations
cspA	E. coli	unknown	Reduced temperature [<200C]	Low temperature causes slow growth of cells.
recA	E. coli	lexA	Nalidixic acid	Not titratable
trc, hybrid	E. coli	laci, laciglaci[Ts]a, lacig[Ts]a	IPTG, Thermal	Not itratable
cadA	E. coli	cadR	pH	Uncertainty of induction
caun	E. COII	caux	рн	timing:
				pH for induction and optimum pH for growth can be far apart.
proll	E. coli		Salt	
proU	E. COII		Salt	Consumption of salt by cell
				during growth.

Lac Repressor

Promoter systems:
Lac
Тас
Trc
<u>Also in:</u>
T5
Τ7
cspA

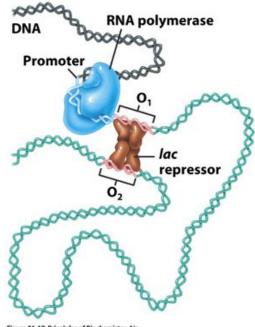
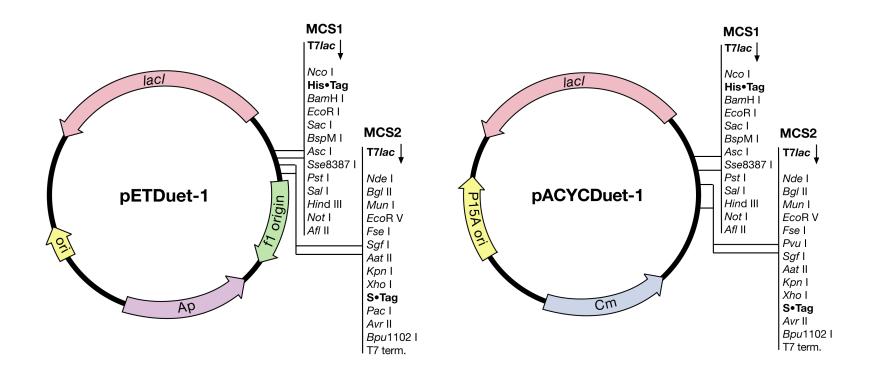


Figure 21-17 Principles of Biochemistry, 4/e © 2006 Pearson Prentice Hall, Inc.


Nature Reviews Microbiology 6, 507-519 (July 2008)

Plasmid Features: compatible ori's

Common plasmid vectors, their origin of replication and copy number.

Common plasmid vectors	ORI	Copy number type
pBR322	pMB1	Low copy (15–20)
pUC	pMB1	High copy (500–700)
pColE1	ColE1	Low copy (15–20)
pBluescript	ColE1	High copy (300–500)
pR6 K	R6 K	Low copy (15–20)
pACYC	p15A	Low copy (10–12)
pGEM	pUC	High copy (300–500)
pGEX	pBR322	Low copy (15–20)
pET	pBR322	Low copy (15–20)
pSC101	pSC101	Low copy (5)
pBAD	pUC	Low copy (10–12)

Plasmids for co-expression

Gene

Vector

Gene

Growth conditions

Host

Check sequence of obtained construct

		T7 promoter	primer #6934	8-1								
pET upstream primer #6	69214-1	T7 pro	omoter	•	lac op	perator		Xba I			rbs	
AGATCGATCTCG	ATCCCGCGAA	ATTAATACGA	ACTCACTATAC	GGGAAI	TGTGAG	CGGATA/	ACAATTC	CCCTCTAG	AAATAAT	TTTGTTTAACTTTAAC	GAAGGAGA	
Nde I	His•Tag								S•Tag	<u>S•Tag primer #699</u> Nsp V	>40-1	Bgl II
TATACATATGCA MetHi							GAAAGAA tLysGlu			ATTCGAACGCCAGCAC PheGluArgGlnHis		
Kpn I	pET-30a(+)	Nco I Ed	coR V BamH	EcoR I	thromb Sac I	bin Sall	- Hind III	Eag I Not I	Xho I	His•Tag	-	-
· · · ·	AspAspLysA	CCATG <mark>GCTG</mark> laMetAlaAs	ATATCGGATCO splleGlySei							CA <mark>CCA</mark> CCACCACCACCAC		
en	terokinase											
	pET-30b(+)									CAC <mark>CAC</mark> CACCACCACCA Hishishishishishi		
	pET-30c(+)									AGC <mark>ACC</mark> ACCACCACCAC	CCACTGAGATO	CGGCTGCTAA ArgLeuLeu
			Bpu11	02 I				T7 termir	nator			
CAAAGCCCGAAA	GGAAGCTGAG	TTGGCTGCTG	GCCACCGCTG	GCAATA	ACTAGCA	ATAACCO	CCTTGGG	GCCTCTAA	ACGGGT	TTGAGGGGTTTTTTG		
			T7 termina	ator prim	er #6933	7-1						

- Check for full ORF and codon suitability
- Distance of initiation ATG from RBS
- GC rich regions following ATG
- Standard procedure: order synthetic gene in vector or for Gibson cloning

Use DNA analysis tools

RBS T7 promoter **Tool Sets for DNA Manipulation** nelB signal sequence lac ope 1. SnapGene MCS 2. everyVECTOR Ampg 3. pDRAW32 DNA analysis software 4. DNA Strider (for Mac users) 5. EnzymeX (for Mac users) pET-22b(+) 6. <u>APE</u> - A plasmid editor 7. Sequence Manipulation Suite 8. CLC free workbench **FOP**

(T7 terminator

6xHis

http://wolfson.huji.ac.il/expression/rec-dna-web-tools.html

Fusion proteins:

- Increase solubility
- Increase productivity
- Support folding
- Reduce toxicity
- Improve activity
- Facilitates purification

Solves problems such as:

- Aggregation due to misfolding and hydrophobicity
- Low production levels due to poor translation initiation
- Purification of target protein from bacterial contaminants
- Degradation

Fusion Proteins short list:

Fusion protein

MBP(can be with N-term His tag)

SUMO (with N-term His tag)

GST

Thioredoxin (with N-term His tag) DsbA/C(might be with N-term His tag) Lipoyl domain (with N-term His tag) CBD

Purification method

Amylose/nickel binding Nickel purification Glutathione binding Nickel Binding Osmotic shock/Nickel Binding Nickel column Cellulose binding Signals can be removed by chemical or enzymatic methods. Removal of fusion proteins with cyanogen bromide, or hydroxylamine is effective, but often requires extreme conditions (low pH or high temp.), and is often non-specific.

Enzymatic digestion is the method of choice for soluble fusion protein cleavage. reaction is carried out under relative mild conditions.

Enterokinase:	Asp Asp Asp Asp Lys
Factor Xa:	Ile Glu/Asp Gly Arg
TEV:	Glu Asn Leu Tyr Phe Gln Gly
Thrombin:	Leu Val Pro Arg Gly Ser
Sumo protease	Full length sumo protein Gly

Fusion partner should be compatible with the expression problem!

Hydrophobic proteins require highly soluble fusion partner

Maltose-binding protein (MBP)
Glutathion S-tranferase (GST)
Sumo protein
These genes are well expressed, highly soluble, and provide specific characteristics to aid purification.

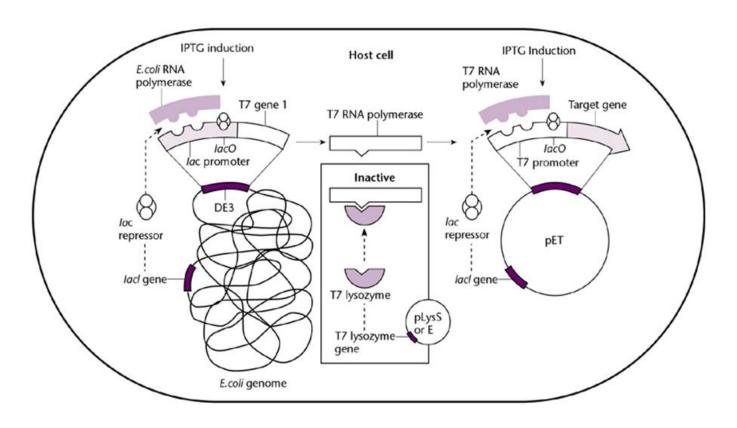
Problems:

- 1. Cleavage of fusion partner may cause re-aggregation!
- 2. Removal of fusion proteins reduces productivity and can be very costly (not suitable for therapeutics)
- 3. N-terminus partner might cause pre-mature termination

Host

Vector

Gene



Growth conditions

Host

Host cells for T7 promoters

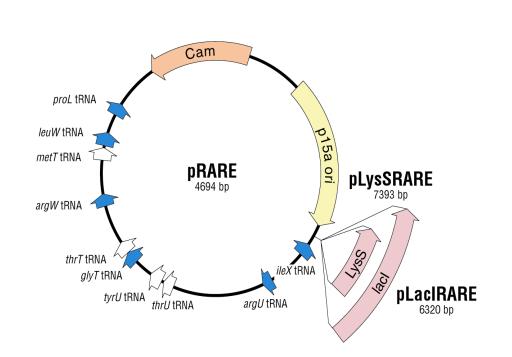

The pET vector system for protein production.

Table 1. Arg, Gly, Ile, Leu and Pro codon usage in <i>E. coli</i>							
codon	fraction in all genes	fraction in Class II					
AGG	0.022	0.003					
AGA	0.039	0.006					
CGG	0.098	0.008					
CGA	0.065	0.011					
CGU	0.378	0.643					
CGC	0.398	0.330					
GGG	0.151	0.044					
GGA	0.109	0.020					
GGU	0.337	0.508					
GGC	0.403	0.428					
AUA	0.073	0.006					
AUU	0.507	0.335					
AUC	0.420	0.659					
UUG	0.129	0.034					
UUA	0.131	0.055					
CUG	0.496	0.767					
CUA	0.037	0.008					
CUU	0.104	0.056					
CUC	0.104	0.080					
CCG	0.525	0.719					
CCA	0.191	0.153					
CCU	0.159	0.112					
CCC	0.124	0.016					
	E. coli codon AGG AGA CGG CGA CGU CGC GGG GGA GGU GGC AUA AUU AUU AUU UUG UUG UUG UUA CUG CUA CUU CUC CCG CCA CCU	codin fraction in all genes AGG 0.022 AGA 0.039 CGG 0.098 CGA 0.065 CGU 0.378 CGC 0.398 GGG 0.151 GGA 0.0073 AUU 0.507 AUC 0.420 UUG 0.129 UUA 0.131 CUG 0.496 CUA 0.037 CUU 0.104 CUC 0.104 CUC 0.525 CCA 0.191 CUC 0.159					

Codon usage is expressed as the fraction of all possible codons for a given amino acid. "All genes" is the fraction represented in all 4,290 coding sequences in the *E. coli* genome (6). "Class II" is the fraction represented in 195 genes highly and continuously expressed during exponential growth (7).

Changing codon bias

In strains such as BL21-Rossetta (Merck/Novagen); BL21-Codon Plus (Agilent/Stratagene) AKA: RIL/RP strains

Specialized Host strains

- Rare codons (Rosetta, CodonPlus)
- Disulfide bonds (origami, shuffle)
- Membrane proteins (C41/C43)
- Labile proteins (low proteases)
- Toxic proteins (tight regulation: BL21(AI))
- DNA rearrangements (recA-, low copy Sure2, StbleIII, AbleC, mainly for cloning..)

http://wolfson.huji.ac.il/expression/bac-strains-prot-exp.html

Growth conditions

Vector

Gene

Growth

conditions

Host

Growth conditions may affect:

- Poor cell growth
- Poor expression
- Leaky expression
- Formation of insoluble protein
- Accumulation of truncated protein

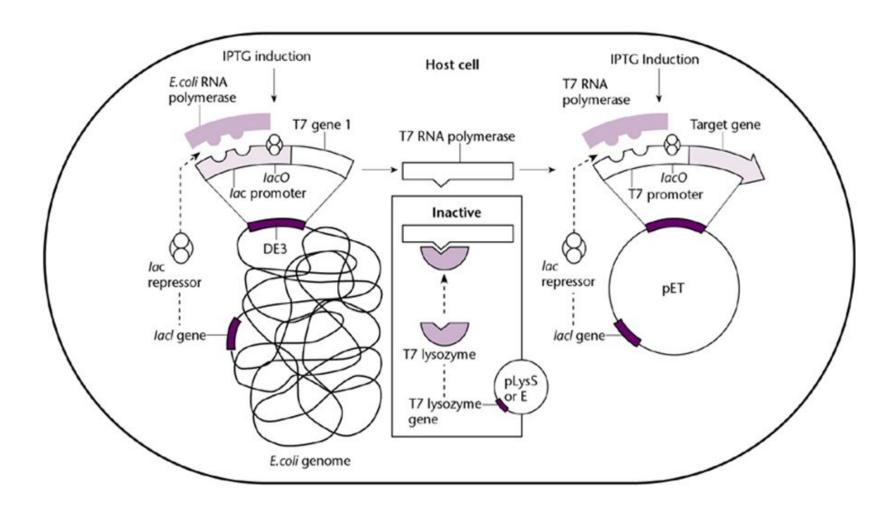
Play with The Following Parameters:

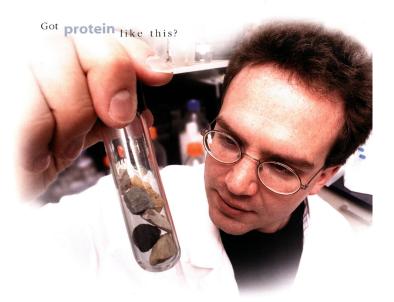
- 1. Medium formulation (rich/minimal; additives)
- 2. Growth temperature
- 3. Induction conditions: IPTG levels/at ? OD
- 4. Induction/harvest time (post induction)
- 5. Adding supplements to reduce leakiness
- 6. Adding chemical chaperones
- 7. Aeration conditions (fermentors)

Common Problems in Protein Expression in E. coli

- Aggregations
- Irreproducibility
- Low Productivity
- Truncations
- Degradations
- Inactivity

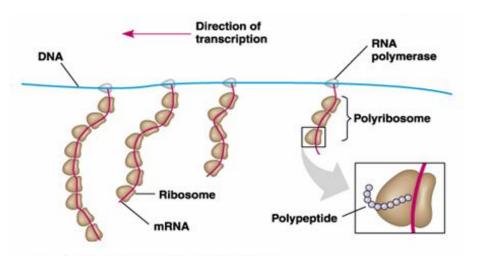
Pls Sir, can I have some more? MORE!!!!???

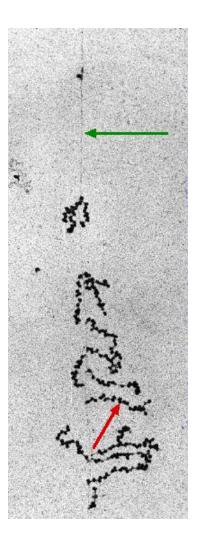

Observation from the last 20 years of practice


<u>Problem:</u> Irreproducibility and low productivity

<u>Solution:</u> Start from fresh transformation and NOT from glycerol stocks

Lose of transcription mechanism in host


Observation from the last 20 years of practice


- <u>Problem:</u> Aggregates and truncated proteins
- Solution: Suppress leaky expression and reduce induction conditions

Coupled transcription translation and the polysome

 A single mRNA molecule usually has many ribosomes traveling along it, in various stages of synthesizing the polypeptide .This complex is called a **polysome**

Reprinted with permission from O. L. Miller, Jr., B. A. Hamkalo, and C. A. Thomas, Jr., Science 169 (1970):392. Copyright © 1970 American Association for the Advancement of Science. @1999 Addison Wesley Longman, Inc.

Fusion proteins:

- Increase solubility
- Increase productivity
- Support folding
- Reduce toxicity
- Improve activity
- Facilitates purification

Solves problems such as:

- Aggregation due to misfolding and hydrophobicity
- Low production levels due to poor translation initiation
- Purification of target protein from bacterial contaminants
- Degradation

Strategies to reduce basal expression in T7 systems

- 1. Inhibit T7 polymerase with T7 lysozyme
- 2. Block target promoter with *lac* repressor

Lactose is a contaminant of tryptones from the media:

- Tryptones are tryptic digests of casein
- Casein comes from milk
- Milk contains lactose

Glucose prevents unintended induction!

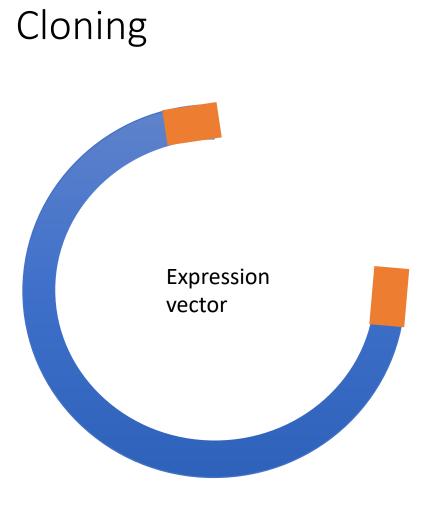
Glucose Repression

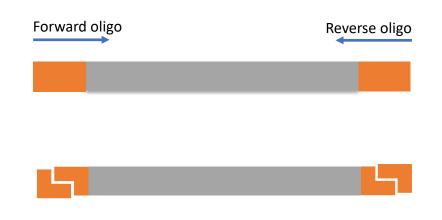
Glucose represses basal expression levels by lowering cAMP levels which in turn decrease the binding of CAP. As cAMP levels are lowered, transcriptional activation is decreased. Add glucose to the culture medium to repress basal expression levels.

Inducing Expression

Classic method of induction:

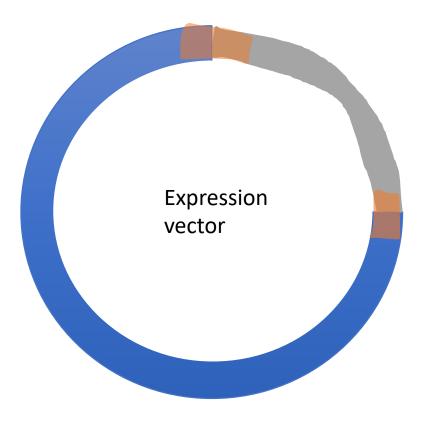
- Cells are grown in log-phase culture
- IPTG is added at appropriate culture density


Rational for auto-induction:


- Growth in glucose and other carbon sources prevents induction by lactose
- Media with appropriate mixtures of carbon sources allow growth with minimal basal induction, followed by automatic induction at high density

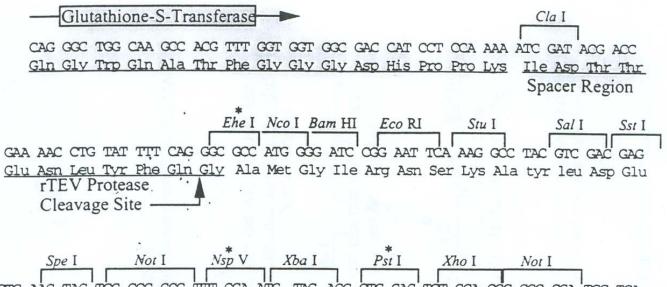
http://wolfson.huji.ac.il/expression/procedures/bacterial/auto-induced-exp.html F. William Studier; in Protein Expression and Purification (2005) 41:207-234

Our minimal throughput screen


- Clone gene with different fusion partners
- Transform in parallel into several strains
- Pick colonies into an auto induction media
- Screen after over-night growth for Nickel binding

Gibson / restriction cloning PCR from template / Synthetic genes

Expression vector requirements



Sequence the vector to verify:

- Correct open reading frame (ORF)
- In frame with N-term or C-term tag
- Stop codon at the end of the reading frame

Check for correct reading frame with N-term

<u>pGST-Parallel3</u> (Based on pGEX4T1)

CTC AAC TAG TGC GGC CGC TIT CGA AIC TAG AGC CTG CAG TCT CGA GCG GCC GCA TCG TGA Leu Thr Ser Arg Gly Arg Phe Arg Ile ***

*Non-unique sites

Expressing vectors cassettes examples

Promoters, Fusion tags & proteins, 5' gene composition, etc.

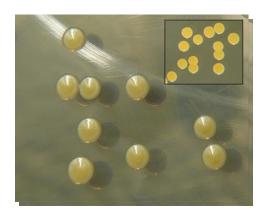
pET-MBP vector

pET-SUMO vector

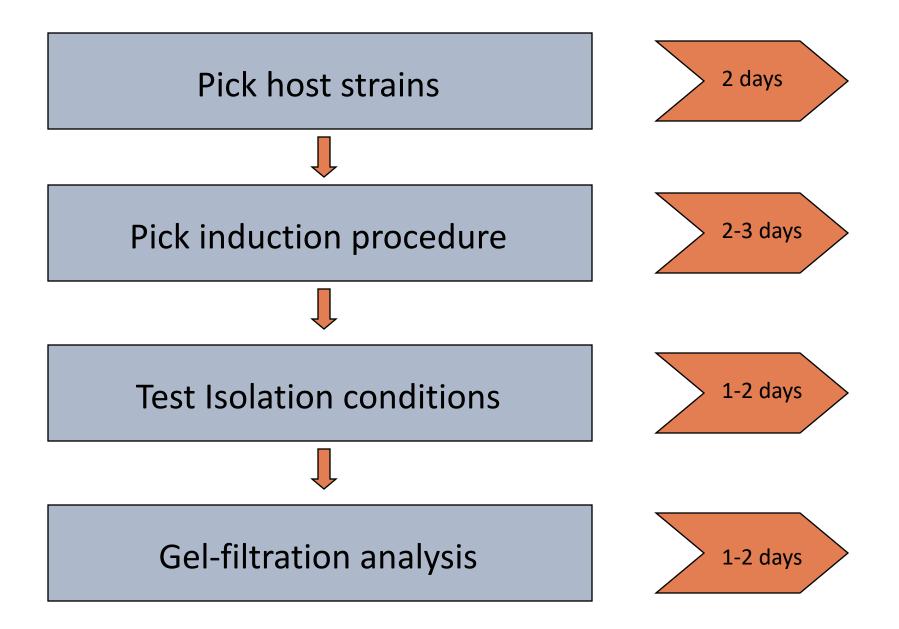
T7 promoter	6xHis	TEV	SUMO Target	

pET-PelB-His-tag vector

Mix plasmid with bacteria


Plate on selective agar plate




Grow for O/N

Pick a colony into LB containing tube

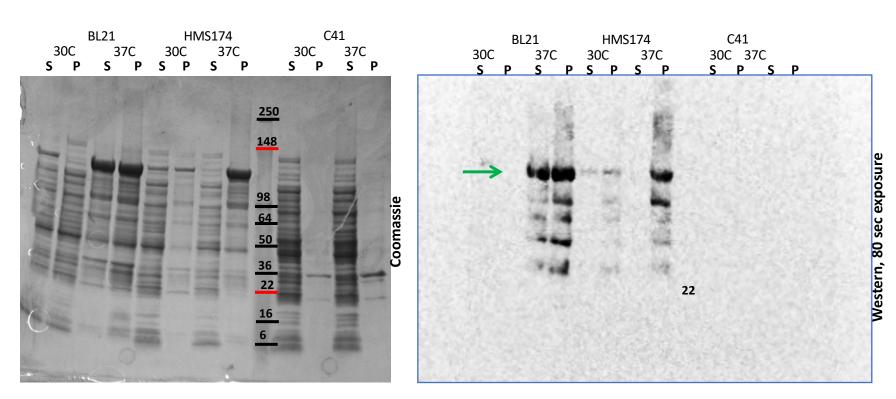
Grow for 2-16h at 37C

Initial screening overview:

- 1. Transform construct into several "suitable" bacterial strains
- 2. Plate strains on selective agar plates
- 3. Pick a single colony into an auto-induced media snap-cap tube and grow O/N in 30C and 37C shakers
- Collect samples, lyse (sonication or detergent: BugBuster+ Benzonase nuclease[Novagen] and separate sup from pellet by centrifugation).
- 5. Load sups Vs. pellets on SDS-PAGE for coomassie and Western analysis or onto small-scale nickel columns

2 constructs x 6 strains x 2 temperature conditions x sup+pellet = 48 samples

Case study: Expressing Screen of a 100 kDa protein for activity assays (binding)


pET-MBP vector

pET-SUMO vector

SUMO-Target1 bacterial selection in autoinduced media

Expected protein size: 130 kDa (Target1 + Sumo) 1st Ab: Mouse anti-His 2nd Ab: HRP goat anti-mouse

Some additional options to save your protein

- Heat-shock + chemical chaperones
- Heat shock +chaperones + fusion protein
- Co-express with a buddy (ligand/receptor)
- Truncate domains (also in HTS in-vitro)
- Denaturation and re-naturation screens

For Induction and Heat Shock procedures: http://wolfson.huji.ac.il/expression/procedures/bacterial/Induction.Condition.Callib.new.htm

Pareto's Principle - The 80-20 Rule

- 20% of the inputs or activities are responsible for 80% of the outcomes or results.
- This means that for the 20% chance that you might succeed, you should place 80% of your resources.

All depends on how fixed you are on E. coli

What next?

- Cloning technologies
- Expression in mammalian cells
- Suggestions?

Aggregations in bacterial cells

Cause of aggregations	Solution 1: Vector	Solution 2: Host Strain	Solution 3: Growth Conditions
lack of correct disulfide bond formation	Fuse with TRX, DsbA, DsbC fusion partners Clone with periplasmic secretion signal (pelB, OmpA)	Use Origami and Shuffle strains	Standard Screen and reduce efficiency of expression conditions
Intrinsically disordered protein	Fuse with MBP, NusA, Sumo lipoyl-domain tag	Membrane-rich strains such as C41 and C43	Standard screen Heat shock with chemical chaperones
Hydrophobic protein	Fuse with solubility enhancing proteins such as MBP, NusA, SUMO	Membrane-rich strains such as C41 and C43	Standard screen Heat shock with chemical chaperones
No appropriate chaperones	Co-express with chaperone containing vectors	Screen BL21, K12, Lemo (NEB) and Arctic (Agilent)	Standard screen Heat shock with chemical chaperones
Protein is natively directed to a sub- cellular localization	Remove localization signal or replace signal with periplasmic secretion signal (peIB, OmpA)	Membrane rich strains as C41 and C43 or Lemo strain	Standard screen Reduce inducer concentration Induce at high OD

Aggregations continues:

Membrane protein	Generate and screen soluble domains	Use membrane- rich strains as C41 and C43, or Lemo strain	Lower induction temperature Reduce inducer concentration Induce at high OD
Protein is part of a complex	Fuse with large fusion proteins such as MBP NusA Co-express with a partner :combination of 2-4 vectors for max 8 proteins	Screen tight induction- regulated strains	Heat shock with chemical chaperones

No / Low Protein Production:

Cause	Solution 1: Vector	Solution 2: Host Strain	Solution 3: Growth Conditions
Toxic protein	Use T7 or Arabinos promoter-• based vectors Tightly regulate induction w/repressor	Check cell growth to • eliminate toxicity Use BL21AI or • BL21(DE3)pLysS/E	Shorten induction time • Add Glucose to suppress leaky • expression
Initiation problems	Re-clone with more A residues • at 5' Shorten distance between RBS • (2-8 nt)and first ATG		
Rare codons	Use synthetic, codon-optimized gene	Use stains supplementing rare codons (Rosetta, Codon +)	Slow translation by reducing temperature
Your gene induces rearrangement and lose of DE3 lysogen	Tightly suppress gene • expression prior to induction Use low-copy ori•	Use recA- strains• (HMS174; BLR)	Start from freshly transformed • bacteria Add Glucose to suppress leaky • expression

Truncated proteins

Cause	Solution 1: Vector	Solution 2: Host Strain	Solution 3: Growth Conditions
Rare codons	Optimize codon usage	Use rare codon strains	Slow elongation by low temp.; low inducer; poor media
Fast-translation of fusion protein	Sub-clone with another fusion partner or avoid N-terminus fusion protein		Slow expression rate with low temp.; low inducer; harvest; poor media short
Degradation	Detect and replace specific protease sites	Low protease strains	Grow and induce at low temp, use protease Inhibitors in lysis media change cell lysis methods lyse cells on ice